3D-Darstellung von Nervenzellen

Foto: Ganglienzellen

Aufeinander folgende virtuelle
Schnitte durch Ganglienzellen;
© Uni Basel

Das Innenohr mit der Hörschnecke gehört zu den komplexesten anatomischen Strukturen des menschlichen Körpers, in denen Hart- und Weichgewebe zusammenwirken. Da bereits kleine morphologische Veränderungen das Hörvermögen beeinträchtigen können, sind detaillierte Kenntnisse des Innenohrs nötig, um Gehörerkrankungen besser verstehen und behandeln zu können. Auch für den Bau von Hörprothesen und das Einsetzen von Implantaten sind genaue Kenntnisse von Struktur und Form des Innenohrs unerlässlich.

Umso wichtiger ist es, Visualisierungsverfahren zu entwickeln, welche die Weichgewebeteile des Innenohrs wie Membrane, Nervenfasern und Ganglienzellen auf der Mikrometerskala darstellen können. Diese Weichgewebe befinden sich innerhalb des Felsenbeins, einem der härtesten menschlichen Knochen, der sehr viel Röntgenstrahlung absorbiert. Deshalb blieben die verschiedenen Membranen und Nerven im Röntgenlicht bisher unsichtbar.

Um für die filigranen Mikrostrukturen den nötigen Kontrast zu erreichen, erhöhten die Forscher die Absorption des Weichgewebes durch das Metall Osmium. Die verwendete Osmiumverbindung reagiert mit den ungesättigten Fettsäuren im Weichgewebe und erhöht entscheidend die Absorption der Zellmembranen.

Durch Röntgenlicht mit einer definierten Wellenlänge oder Farbe gelang es der Forschungsgruppe um Professor Bert Müller vom Biomaterials Science Center der Universität Basel, die zellulären Strukturen des Innenohrs hoch aufgelöst und in ihrer dreidimensionalen Anordnung zu visualisieren.

Bislang beruhten die morphologischen Kenntnisse der filigranen Mikrostrukturen des Innenohrs samt der Hörschnecke auf histologischen Gewebeschnitten - eine Technik, durch die das Weichgewebe indes seine Form ändert. Mit ihrem Vorgehen war es den Forschern nun möglich, die komplex geformten Mikrostrukturen der Hörschnecke ohne zu schneiden tomographisch sichtbar zu machen - und dies in einer Auflösung, bei der Hunderte oder gar Tausende von Zellen einzeln ausgezählt werden können.

MEDICA.de; Quelle: Universität Basel