Dresdner Krebsforscher für Teilchen-Stoppuhr ausgezeichnet

09.09.2016

In seiner Promotionsarbeit entdeckte Dr. Christian Golnik vom OncoRay-Zentrum  (Trägerinstitutionen: Universitätsklinikum Carl Gustav Carus, TU Dresden und HZDR) eine neue Methode, um die Reichweite von Partikelstrahlen bei der Behandlung von Krebspatienten zu messen. Das innovative und vergleichsweise einfache Verfahren könnte entscheidend dazu beitragen, die Strahlentherapie mit kleinsten geladenen Teilchen künftig noch wirksamer zu machen. Die Behnken-Berger-Stiftung würdigte die Arbeit des Dresdner Krebsforschers am 7. September 2016 mit ihrem mit 12.000 Euro dotierten 1. Preis.

Bild: Mann arbeitet mit Drähten; Copyright: OncoRay / Dr. Guntram Pausch

Dr. Christian Golnik bei den Vorbereitungen zu dem Experiment, das zur Entdeckung der "Teilchen-Stoppuhr" führte; © OncoRay / Dr. Guntram Pausch

Die Arbeit eines Doktoranden mündet sicherlich selten in eine weltweite Patentanmeldung. Christian Golnik ist mit seiner Dissertation an der Medizinischen Fakultät Carl Gustav Carus ein solch großer Wurf gelungen. Der Dresdner Physiker forscht auf dem Gebiet der Partikeltherapie, einem Verfahren zur Bestrahlung von Tumoren. Hierbei kommen – anders als bei der herkömmlichen Strahlentherapie – keine Röntgenstrahlen, sondern winzige geladene Teilchen wie beispielsweise Protonen zum Einsatz. "Die Partikeltherapie ist hochwirksam, allerdings lässt sich ihr Potential derzeit weltweit noch nicht ausschöpfen", sagt der Wissenschaftler. Die von ihm neu entdeckte Methode, das sogenannte "Prompt Gamma-Ray Timing", könnte hier einen entscheidenden Fortschritt bringen.

Partikelstrahlen wirken sehr präzise auf den Tumor, zugleich schonen sie – im Vergleich zur Behandlung mit Röntgenstrahlung – umliegendes gesundes Gewebe deutlich besser. "Die geladenen Teilchen durchdringen den Körper anders als Röntgenstrahlen nicht vollständig. Stattdessen kommen sie, abhängig von der gewählten Strahlenergie, in einer bestimmten Tiefe im Körper zum Stillstand. Erst hier geben sie den Großteil ihrer Energie ab und entfalten ihre strahlentherapeutische Wirkung. Auf diese Weise wird das vor dem Tumor liegende Gewebe wenig und das hinter dem Tumor liegende Gewebe gar nicht durch Strahlen geschädigt", erklärt Christian Golnik. Da die Partikel den Körper nicht wieder verlassen, lässt sich ihre tatsächliche Reichweite allerdings nur schwer von außen bestimmen. Der Teilchenstrahl kann daher bisher nur durch Berechnungen vor der Bestrahlung gesteuert werden. Diese bergen zwar geringe, aber nicht vernachlässigbare Unsicherheiten. Deshalb wird rund um den Tumor immer ein Saum von gesundem Gewebe mitbestrahlt. Damit stellen die Ärzte und Wissenschaftler sicher, dass tatsächlich der gesamte Tumor mit der gewünschten Dosis von den Strahlen getroffen wird. Im Gegenzug wird allerdings die hochpräzise, schonende Wirksamkeit der Partikeltherapie nicht vollständig ausgeschöpft.

Christian Golnik ist es nun gemeinsam mit dem Team um Dr. Guntram Pausch gelungen, ein Verfahren zu entdecken, mit dem sich der Strahlverlauf im Patienten ohne körperlichen Eingriff unmittelbar nachverfolgen lässt. Grundlage hierfür ist eine physikalische Gesetzmäßigkeit: Durchquert ein geladenes Teilchen Gewebe, werden Atomkerne angeregt. Diese geben ihre Energie in Form so genannter prompter Gammastrahlung ab. "Die zeitliche Dauer dieser Gammastrahlung können wir unmittelbar mit geeigneten Detektoren messen. Dadurch erfahren wir, wie lange ein geladenes Teilchen – oder, genauer gesagt, ein Bündel solcher Teilchen – im Gewebe unterwegs ist, bevor es zum Stillstand kommt. Wie mit einer Stoppuhr messen wir also die Abbremszeit der Teilchen. Hiervon ausgehend können wir dann den Bremsweg und damit die Reichweite des Partikelstrahls bestimmen. In der Anwendung am Patienten soll die Methode künftig Abweichungen gegenüber der geplanten Bestrahlung sofort sichtbar machen. Dies ermöglicht eine noch präzisere Bestrahlung und hilft, das umliegende gesunde Gewebe noch besser zu schonen", so Golnik.

Das von Christian Golnik entdeckte "Prompt Gamma-Ray Timing" ist vergleichsweise einfach und kommt mit wenig Technik aus. Daher ist zu erwarten, dass es sich relativ schnell und mit geringem Aufwand in die klinische Praxis überführen lässt. Dies ist ein großer Vorteil gegenüber anderen Verfahren, die derzeit weltweit erforscht werden, um die Eindringtiefe der Teilchen im Patienten während der Bestrahlung zu messen. Bisher wurde nur die so genannte "Prompt Gamma-Schlitzkamera" am Dresdner OncoRay-Zentrum an Patienten erprobt.

Eine wichtige Grundlage für die erfolgreiche Forschungsarbeit lieferte die fächer- und institutionenübergreifende Struktur des OncoRay – Nationales Zentrum für Strahlenforschung in der Onkologie, das vom Universitätsklinikum Carl Gustav Carus, der Technischen Universität Dresden und dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) getragen wird. Ein wichtiger Teil der Experimente fand beispielsweise am ELBE-Beschleuniger und im Ionenstrahlzentrum des HZDR statt. "Kollegen aus dem HZDR-Institut für Strahlenphysik unterstützten uns in wissenschaftlichen und technischen Belangen", erklärt Golnik. "Für die Auswertung der Messungen verwendete ich Grundlagen der Biostatistik, welche ich aus Vorlesungen am OncoRay kannte, und in Fragen der klinischen Rahmenbedingungen konnten wir uns eng mit den Medizinphysikern hier am Zentrum abstimmen."

Die Leistung von Christian Golnik hat auch die Jury des Behnken-Berger-Preises überzeugt. Von der gleichnamigen Stiftung erhielt er am 7. September, während der 47. Jahrestagung der Deutschen Gesellschaft für Medizinische Physik in Würzburg den mit 12.000 Euro dotierten ersten Preis.

MEDICA.de; Quelle: Universitätsklinikum Carl Gustav Carus Dresden
Mehr über das Universitätsklinikum Carl Gustav Carus Dresden unter: www.uniklinikum-dresden.de