Bakterien: Erbguttransfer über Verwandtschaftsgrenzen

27.08.2013
Foto: Bakterien

Bestimmte Zuckerstrukturen auf der Oberfläche von Bakterien erlauben ih-
nen den Austausch von Resistenz-
genen auch über Verwandtschafts-
grenzen hinweg; © panthermedia.net/
Sebastian Kaulitzki

Ein 'Code‘ aus Zuckerstrukturen auf der Bakterienoberfläche steuert den Austausch von Resistenz- und Virulenzgenen zwischen verschiedenen Erregerstämmen, auch wenn diese kaum verwandt sind.

Infektionen durch Antibiotika-resistente Bakterien sind die Ursache für viele tausend Todesfälle in Deutschland und eine der häufigsten Todesursachen weltweit. Da sich immer neue resistente Bakterien ausbreiten, von Pharmafirmen aber immer weniger neue Antibiotika entwickelt werden, ist zu befürchten, dass ein großer Teil der Infektionen in wenigen Jahren kaum noch therapierbar sein wird.

Für die rasante Ausbreitung der Resistenzen und die Entstehung neuer, hoch pathogener Erregerstämme spielt die Fähigkeit der Bakterien, Gene auszutauschen, eine besondere Rolle. Durch welche Mechanismen auch kaum verwandte Bakterien Gene austauschen können, ist bislang noch kaum verstanden. Wissenschaftler der Universität Tübingen haben nun herausgefunden, wie ein Code aus variablen Zuckerstrukturen an der Bakterienoberfläche darüber bestimmt, mit welchen anderen Mikroorganismen pathogene Staphylokokken genetisches Material austauschen können.

Staphylococcus aureus ist einer der häufigsten Erreger von Haut- und Wundinfektionen. Diese führen oft zu systemischen, lebensbedrohlichen Blutvergiftungen. Ständig entstehen neue Erregerstämme mit neuen Kombinationen von Resistenz- und Virulenzgenen, die sich rasch weltweit ausbreiten und die Infektionsmedizin vor wachsende Herausforderungen stellen. Oft scheinen die neuen Gene aus anderen Bakterienarten zu stammen, mit denen S. aureus offenbar genetisches Material ausgetauscht hat.

Die Tübinger Wissenschaftler haben herausgefunden, dass S. aureus unter bestimmten Bedingungen sehr leicht und effizient Gene mit anderen Bakterienarten austauschen kann. Entscheidend für den Genaustausch ist, dass der DNA-Donor und der Rezipient ähnlich aufgebaute Glycostrukturen, sogenannte Teichonsäuren, auf ihrer Oberfläche tragen. Teichonsäuren haben sehr variable Zusammensetzungen, die von Bakterien-spezifischen Viren, den Bakteriophagen, als Erkennungsstrukturen genutzt werden. Die Bakteriophagen können dadurch Erbsubstanz zwischen verschiedenen Bakterienstämmen transferieren, neue Erregerstämme entstehen.

Die Tübinger Forschungsergebnisse zeigen, dass Bakteriophagen genetisches Material auch zwischen kaum verwandten Bakterienarten transferieren können, wenn diese ähnliche aufgebaute Teichonsäuren tragen. So konnten bestimmte S. aureus-Stämme DNA mit Listeria monocytogenes und Staphylococcus epidermidis austauschen, die ähnliche Teichonsäuren bilden, nicht aber mit Enterokokken, die andere Zuckerbausteine verwenden. Diese Erkenntnis ist überraschend, denn die Bakteriophagen können sich in diesen anderen Bakterienarten nicht vermehren. Die aktuelle Arbeit zeigt jedoch, dass sie sehr wohl DNA in andere Arten einbringen können und zwar in hocheffizienter Weise.

Prof. Andreas Peschel vom Institut für Mikrobiologie und Infektionsmedizin der Universität Tübingen: "Die neuen Erkenntnisse helfen uns, zu verstehen, welche Mechanismen die Evolution neuer Erreger steuern. Sie helfen uns aber auch einzuschätzen, wie wahrscheinlich der genetische Austausch zwischen bestimmten Bakterienarten in der Zukunft sein und wie schnell sich ein bestimmtes neues Resistenzgen unter pathogenen Bakterien vermutlich ausbreiten wird."

Neue Antiinfektiva könnten zudem die Biosynthese von Teichonsäuren blockieren, so eines der Fernziele der Tübinger Wissenschaftler, und damit in der Prävention und Therapie bakterieller Infektionen große Bedeutung erlangen.

MEDICA.de; Quelle: Universitätsklinikum Tübingen