Neutronen: Hilfe bei der Aufklärung von Ozonvergiftungen

18.04.2013
Foto: Röntgenbild von der Lunge

Ozon schädigt das Atemsystem und hängt mit Asthma, Bronchitis, Herzanfällen und anderen Herz-Lungen-Problemen zusammen; © panthermedia.net/Edward Bock

Ein Forscherteam von Birkbeck und den Royal Holloway Colleges an der Universität London sowie von der Universität Uppsala in Schweden trug zu der Erklärung bei, wie Ozon schwere Atemwegserkrankungen und jährlich Tausende Fälle von vorzeitigem Tod durch Angriff auf die Fettschicht unserer Lungen verursacht.

Bei einer Studie beobachtete das Team mithilfe von Neutronen am Institut Laue-Langevin in Grenoble und der britischen Neutronenquelle ISIS, wie eine relativ geringe Dosis Ozon Lipidmoleküle angreift, die die Lungenoberfläche abdichten. Lipidmoleküle sind unabdingbar für den Austausch von Sauerstoff und Kohlendioxid, da sie den Kollaps der feuchten Oberflächen der Lunge verhindern.

Ozon wird im Wesentlichen in der oberen Atmosphäre gebildet, da das UV-Licht der Sonne Sauerstoffmoleküle spaltet, aber es entsteht auch am Boden bei der Verbrennung fossiler Brennstoffe. Es ist bekannt, dass es unser Atemsystem schädigt und in Zusammenhang steht mit Asthma, Bronchitis, Herzanfällen und anderen Herz-Lungen-Problemen. Es bleibt jedoch unklar, wie genau Ozon diesen Schaden verursacht. Einer Theorie zufolge greift es die Oberflächenschichten der Lunge an, die aus einer Schicht Wasser unter einem Gemisch aus Lipid genannten Fettmolekülen und Proteinen bestehen, die zusammen das Lungentensid bilden. Dieses Gemisch unterstützt den Austausch von Sauerstoff und Kohlendioxid bei der Atmung.

Leider kann ein Mangel an adäquatem Tensid, wie er oftmals natürlicherweise bei Frühgeburten beobachtet wird, ähnliche Atembeschwerden, wie oben beschrieben, hervorrufen und in manchen Fällen sogar zum Tod führen.

Zu einer Untersuchung führten Doktor Katherine Thompson und ihr Team Neutronenreflexionsexperimente an einer künstlichen einlagigen Lipidschicht durch, mit der die Lungenoberfläche simuliert wurde. Die Lipidschicht wurde einem verdünnten Gasgemisch aus Ozon ausgesetzt und die Veränderungen in ihrer Struktur oder Oberflächenspannung wurden in Echtzeit untersucht.
Die Ozonkonzentration betrug etwa 100 parts per billion (0.1 ppm), was in etwa der Größenordnung in einer verschmutzten Stadt im Sommer entspricht.

Die Verwendung von Neutronen ermöglichte es Dr. Thompson, verschiedene Teile der Probe durch Deuterierung zu markieren, ein Prozess, bei dem ein schwereres Wasserstoffisotop eingebaut und undeuterierten Proben gegenübergestellt wird, um die Lage der Wasserstoffatome herauszufinden. So konnten verschiedene Teile des Moleküls getrennt beobachtet werden, wenn sie mit dem Ozon reagieren.

Mit dieser Technik zeigte Thompsons Team, dass einer der aufwärts zeigenden Schwänze des Lipids, C9-Teil genannt, während der Ozon-Degradation abbricht und vollständig von der Oberfläche verschwindet. Der noch am Lipidkopf haftende Teil orientiert sich dann neu und dringt in die Luft-Wasser-Schnittstelle ein. Der Verlust des C9-Teils verursacht einen anfänglichen Abfall der Oberflächenspannung, welcher zeitweilig zu einer Ausdehnung der Oberfläche für den Gasaustausch und das effiziente Atmen führt. Dieser Effekt ist jedoch von kurzer Dauer, weil das Eindringen des Molekülrests in das Wasser einen langsamen, aber ausgeprägten Anstieg der Oberflächenspannung verursacht ‒ bis zu einem Ausmaß, das letztlich einen Nettozuwachs zur Folge hat.

MEDICA.de; Quelle: Institut Laue-Langevin