Hungernde Bakterien überleben dank Energieeinsparungen

Foto: Zelle

Im Vordergrund: die räumliche Struk-
tur eines Ribosomenpaars, stark ver-
größert. Orange dargestellt ist der neu
entdeckte, bisher unbekannte Teil der
Ribosomenstruktur;© MPI für Biochemie

„Der inaktive Zustand ist umkehrbar“, erläutert Julio Ortiz, „und hilft den Bakterien, die Hungerperiode zu überleben.“

Während der Finanzkrise verringerten Banken die Anzahl der Angestellten und verkürzten die Arbeitszeit der Übrigen. Bakterien lösen Probleme ähnlich. Sind nicht mehr genügend Nährstoffe vorhanden, setzen Bakterien die Proteinproduktion aus und entlassen einige der dafür zuständigen Arbeiter, die Ribosomen. Die restlichen verharren in Paaren in einem Ruhezustand. Da dieser Prozess dem Winterschlaf von Tieren ähnelt, werden die gehemmten Ribosome auch „überwinternde“ Ribosomen genannt.

Das Problem ist, dass die paarigen Ribosomen auch als Folge der Isolation entstanden sein können. Zudem spielen viele Faktoren in der Hungerperiode von Bakterien eine Rolle und daher ist es notwendig, die Ribosomen in ihrer „natürlichen Umgebung“, dem Zellinneren, abzubilden und zu untersuchen. Möglich macht dies die Kryo-Elektronentomografie.

Mit dieser Technik können zelluläre Strukturen dreidimensional abgebildet und betrachtet werden. Die Zelle wird quasi schockgefroren, sodass ihre räumliche Struktur erhalten bleibt und sie in ihren Eigenschaften nicht verändert wird. Dann nehmen die Forscher mit dem Elektronenmikroskop aus verschiedenen Blickwinkeln zweidimensionale Bilder der Zelle auf, aus denen sie schließlich ein dreidimensionales Bild rekonstruieren.

Mit Hilfe dieser Methode konnten die MPIB-Wissenschaftler um Wolfgang Baumeiser jetzt erstmals „überwinternde“ Ribosomen in hungernden Bakterien nachweisen. „Wir konnten zeigen, dass diese ruhenden Ribosomen in intakten E. coli Zellen unter ernährungsbedingtem Stress existieren. Sie verschwinden jedoch, wenn Nährstoffe wieder hinzugefügt werden. Wir glauben, dass unsere Ergebnisse Aufschluss über zelluläre Mechanismen der Stressverarbeitung und Regulierung der Proteinproduktion geben“, erklärt Baumeister.


MEDICA.de; Quelle: Max-Planck-Institut für Biochemie