"Unsere Ergebnisse zeigen, dass es essenziell sein wird, den Mechanismus dieser Interaktion aufzuklären, um potenzielle neue Ansatzpunkte für die Behandlung von neuronalen Krankheiten zu gewinnen, die auf glutamaterger Übererregung von Neuronen basieren, wie etwa Epilepsie oder die sekundären Zellschäden bei Parkinson", erklärt Prof. Dr. Michael Hollmann, Biochemiker der Ruhr-Universität Bochum.

Wenn Nervenzellen miteinander kommunizieren, setzt die "Senderzelle", die eine Nachricht absetzen will, den Botenstoff Glutamat frei. Dieser Botenstoff diffundiert zur benachbarten "Empfängerzelle" und bindet dort an ein "Empfängermolekül", den Glutamatrezeptor. Durch Bindung des Botenstoffes L-Glutamat öffnet dieser Rezeptor ein Membrantor, wodurch es zu einem Einstrom von positiv geladenen Ionen in die Zelle kommt, womit dann "die Botschaft" in der Empfängerzelle angekommen ist.

Zur Steuerung der Empfangsempfindlichkeit, der Signalstärke und der Signalfrequenz, in der die Botschaft kodiert ist, verfügen Nervenzellen über eine ganze Reihe von molekularen Mechanismen, die Signalverarbeitung durch den Rezeptor an bestimmte Erfordernisse anzupassen. Eine Untergruppe der Glutamatrezeptoren, die sog. AMPA-Rezeptoren, haben dazu einen erst kürzlich entdeckten Mechanismus entwickelt, der auf der Rezeptormodulation durch eine neue Klasse von Proteinen beruht, den TAR-Proteinen.

In der jetzt veröffentlichten Arbeit zeigen die Forscher zum ersten Mal, dass der Einfluss der Interaktion eines TARPs auf einen AMPA-Rezeptor sowohl von dem beteiligten TARP - es gibt vier verschiedene - als auch vom jeweiligen AMPA-Rezeptor abhängt - auch dort gibt es vier verschiedene Gene, sowie zusätzliche Spleiß- sowie Edier-Varianten. "Jede Kombination zeigte ein ganz individuelles Muster der Auswirkungen der Interaktion. Das war nach den bisher veröffentlichten Daten nicht zu erwarten", so Prof. Hollmann.

MEDICA.de; Quelle: Ruhr-Universität Bochum