Kraftwerken der Zelle

Nach zehnjähriger Forschungsarbeit ist nun die röntgenkristallographische Strukturanalyse des riesigen und kompliziertesten Proteinkomplexes der mitochondrialen Atmungskette gelungen. Er besteht aus mehr als 40 verschiedenen Proteinen, markiert den Anfangspunkt der Zellatmung und wird deshalb auch als mitochondrialer Komplex I bezeichnet.

Ein detailliertes Verständnis der Funktion von Komplex I ist von besonderem medizinischem Interesse, da Fehlfunktionen mit einer Reihe von neurodegenerativen Erkrankungen wie Morbus Parkinson oder Morbus Alzheimer, aber auch dem biologischen Altern insgesamt, in Verbindung gebracht werden. Professor Carola Hunte vom Freiburger Institut für Biochemie und Molekularbiologie gelang in Kooperation mit Professor Ulrich Brandt, Professor für Molekulare Bioenergetik, ein wichtiger Schritt zu diesem Verständnis.

Der Energiestoffwechsel findet in den sogenannten Kraftwerken der Zelle, den Mitochondrien, statt. Sie überführen die von außen in Form von Nahrung aufgenommene Energie in den zellintern universell einsetzbaren Energieträger Adenosintriphosphat, kurz ATP. Eine Kette von fünf, kompliziert gebauten molekularen Maschinen in der Mitochondrienmembran führt diese Energieumwandlung durch.

Die Herstellung von ATP in den Mitochondrien durchläuft deshalb so viele Schritte, weil die zugrunde liegende Umsetzung einer Knallgasreaktion entspricht. Lässt man im Labor Wasserstoffgas und Sauerstoff miteinander reagieren, verpufft die in den Ausgangsstoffen enthaltene Energie explosionsartig in Form von Wärme. Bei der biologischen Oxidation durch die membrangebundenen Proteinkomplexe der Atmungskette wird die Energie dagegen kontrolliert in kleinen Paketen freigesetzt. Wie bei einer Brennstoffzelle wird sie in ein elektrisches Membranpotential umgewandelt, das letztendlich für die Synthese von ATP genutzt werden kann. Zusammengerechnet bilden die Oberflächen der Mitochondrien im menschlichen Körper eine Fläche von 14.000 Quadratmetern. Dort werden täglich etwa 65 Kilogramm ATP produziert.

Das jetzt vorgestellte Strukturmodell gibt wichtige und unerwartete Hinweise auf die Funktionsweise von Komplex I. Eine aus keinem anderen Protein bekannte Form eines molekularen „Transmissionsgestänges“ scheint demnach für den Energietransfer innerhalb des Proteinkomplexes durch mechanische Kopplung im Nanomaßstab verantwortlich zu sein.


MEDICA.de; Quelle: Albert-Ludwigs-Universität Freiburg im Breisgau