Mechanismen der DNA-Organisation

Zugleich zeigte sich, dass gängige Thesen zur DNA-Organisation wohl nicht zutreffen. „Das ist ein wirklicher Meilenstein, da wir nun erstmals die genomweiten Mechanismen der Nukleosomen-Positionierung biochemisch untersuchen können – also unter frei variablen und kontrollierten Bedingungen, wie es in lebenden Zellen nicht möglich wäre“, freut sich Doktor Korber, der zusammen mit seinem Doktoranden Christian Wippo vom Adolf-Butenandt-Institut der Ludwig-Maximilians-Universität (LMU) München und einer Gruppe von Professor Franklin Pugh (Pennsylvania State University, USA) an diesem Projekt gearbeitet hat.

Zu verstehen, was die Nukleosomen an Ort und Stelle platziert, ist von fundamentaler Bedeutung für alle DNA-abhängigen Prozesse, denn dieser wichtige Mechanismus reguliert den Zugriff auf die genomische Information. Einige Modelle zur Nukleosomenpositionierung wurden theoretisch entwickelt, konnten aber nicht ausreichend experimentell überprüft werden.

Von Bedeutung waren dabei vor allem drei Theorien: Erstens die These vom „genomischen Positionierungs-Code“, derzufolge strukturelle Eigenschaften der DNA, die durch die DNA-Sequenz selbst festgelegt werden, die Positionierung der Nukleosomen beeinflussen. Einer zweiten These zufolge verhalten sich Nukleosomen auf der DNA wie Waggons auf Schienen, die sich ganz passiv („statistisch“) anordnen, weil ab und zu Prellböcke („Barrieren“) aufgestellt sind. Als weitere Möglichkeit wird vermutet, dass das Ablesen der Gene – die Transkription – einen ordnenden Effekt hat und die Nukleosomen positioniert.

Diese Thesen an lebenden Zellen zu überprüfen, war bisher schlecht möglich. Die Nukleosomenorganisation ist so grundlegend für den Aufbau des Zellkerns, dass experimentelle Eingriffe sofort zu toten oder sterbenden Zellen führen und schwer einschätzbare sekundäre Effekte eintreten.

In den Arbeitsgruppen von Korber und Pugh gelang nun der entscheidende Durchbruch: Die Wissenschaftler nutzten ein biochemisches In vitro-System, das gereinigte „nackte“ DNA in eine DNA mit Perlenkettenstruktur umbauen kann – und wenn zu diesem System auch Hefeextrakt zugegeben wurde, nahmen die nachgebauten Nukleosomen sogar dieselben Plätze ein wie in lebender Hefe. Der Hefeextrakt spielt dabei eine entscheidende Rolle, ohne ihn und das Energie spendende Molekül ATP gelang der originalgetreue Nachbau der DNA-Verpackung nicht. Das zeigt zum einen, dass neben DNA und Histonen zusätzliche Faktoren benötigt werden, um die Nukleosomen richtig zu positionieren, und zum anderen, dass es sich dabei um einen energieabhängigen – also aktiven – Prozess handelt. Diese Beobachtungen widerlegen die These vom „Positionierungs-Code“ und sprechen auch gegen eine rein passive statistische Verteilung der Nukleosomen.

Gegen das statistische Modell spricht auch ein weiteres Experiment der Wissenschaftler: „Da das neue System komplett zellfrei ist, können zum ersten Mal alle Parameter frei kontrolliert und variiert werden. So haben wir die Nukleosomendichte halbiert, was man mit lebenden Zellen unmöglich machen kann. Die Theorie der statistischen Positionierung, die auch wir bis dahin favorisiert hatten, fordert dann einen größeren Abstand zwischen den Nukleosomen – zu unserer eigenen Überraschung blieb der Abstand aber gleich. Irgendetwas im Hefeextrakt hält aktiv die Nukleosomen beieinander“, sagt Korber. Auch die Transkriptionsthese als letzte Theorie scheidet vermutlich aus, da das neue System die Transkription nicht beinhaltet. „Nachdem wir die gängigen Theorien infrage gestellt beziehungsweise widerlegt haben, geht nun die Suche nach den entscheidenden Faktoren, die zur aktiven Packung der Nukleosomen führen, erst richtig los“, meint Korber.

Das neue System ist hierfür der entscheidende technische Fortschritt. „So komplexe Prozesse in zellfreien Systemen nachzubauen, ist alles andere als trivial“, erklärt Korber, „unser In-vitro-System hebt die biochemische Forschung, also das Arbeiten mit Rekonstitutionen, auf eine neue Stufe, mit der wir ein grundlegendes Organisationsprinzip des Genoms besser verstehen und untersuchen können.“

MEDICA.de; Quelle: Ludwig-Maximilians-Universität München