Mehr Möglichkeiten für die personalisierte Medizin

Fraunhofer-Forscher haben ein besonders flexibles additives Fertigungsverfahren entwickelt, mit dem sich Knochenimplantate, Zahnersatz, chirurgische Werkzeuge oder Mikroreaktoren in nahezu beliebigem Design herstellen lassen.

13.04.2016

 
Foto: Schnitt durch einen mit 3D-Druck gefertigten Mikroreaktor

Schnitt durch einen additiv gefertigten keramischen Mikroreaktor: Die komplexe Kanalführung sowie die fluidischen Anschlüsse am oberen Ende wurden mit dem Bauteil ausgedruckt; ©Fraunhofer

Die kleine Arzneimittelfabrik neben dem Patientenbett ist nicht größer als ein Zwei-Euro-Stück. Ihre Leitungen und Kanäle sind nur wenige hundert Mikrometer groß. Sie mischt verschiedene Medikamente wie Schmerzmittel, Blutverdünner und Antibiotikum zusammen – kontinuierlich und exakt abgestimmt auf den aktuellen Gesundheitszustand des Patienten. Ein Zukunftsszenario moderner Mikroreaktionstechnik, das es heute so in Krankenhäusern noch nicht gibt. Das Fraunhofer-Institut für Keramische Technologien und Systeme IKTS in Dresden arbeitet daran, dass sich das in naher Zukunft ändert.

Die Dresdner Forscher setzen auf suspensionsbasierte, additive Fertigungsverfahren und deren Kombination mit anderen Produktionsmethoden, um Mikroreaktoren, aber auch Knochenimplantate, Zahnersatz oder chirurgische Werkzeuge herzustellen. "Wir sind weder bei der Art noch bei der Farbe des Materials der gewünschten Bauteile limitiert. So lassen sich Keramiken, Gläser, Kunststoffe oder auch Metalle über thermoplastischen 3D-Druck verarbeiten. Ein weiterer Vorteil: Mehrere verschiedene Materialien können gleichzeitig gefertigt werden", schildert Dr. Tassilo Moritz vom IKTS-Geschäftsfeld "Werkstoffe und Verfahren". Auf ihrer Laboranlage haben die Wissenschaftler bereits Bauteile aus Hochleistungskeramiken und Hartmetallen erfolgreich hergestellt. Jetzt suchen sie Partner, um ihre Technologie in die Praxis zu bringen.

Der Multimaterialansatz ist beispielsweise in der Chirurgie wichtig: Endoskope verfügen oft über ein Instrument, das Gewebe zunächst aufschneidet, Blutgefäße aber sofort wieder über elektrischen Stromfluss verschließt. Damit der Strom nicht den Patienten belastet, muss das Instrument neben Edelstahl auch isolierende keramische Bauteile besitzen. "Keramische Werkstoffe sind häufig gut für medizinische Geräte und Bauteile geeignet. Keramiken sind verschleißbeständig und lassen sich gründlich reinigen", erklärt Moritz.

Für ihr additives Fertigungsverfahren nutzten die Forscher ihr Know-how bei keramischen Materialien und Verfahrenstechniken. Kern ihrer Technologie ist die optimale Aufbereitung von keramischen oder metallischen Suspensionen. Die Mischungen basieren auf einem thermoplastischen Binder, der bereits bei Temperaturen um 80 Grad Celsius flüssig wird. Das ist bei der additiven Fertigung entscheidend, damit sich die Suspensionen rasch abkühlen und eine Schicht nach der anderen übereinander gelegt werden kann. In diesem Binder verteilen sie feine Pulverteilchen aus Metall, Glas oder Keramik. "Wir mischen sehr homogen und stellen die optimale Viskosität exakt ein. Nur so gibt der Drucker die für die jeweilige Bauteilkontur geeignete Tröpfchengröße ab. Wir dürfen weder zu flüssig noch zu pastös mischen. Dafür muss man die Aufbereitungstechnik entsprechend beherrschen", sagt Moritz. Durch die elektrisch erzeugte Temperatur im Drucker wird die Suspension aufgeschmolzen. Nach der Ablage härten die Tröpfchen durch schnelle Abkühlung sofort aus. Das Werkstück baut sich dann auf einer ebenen Plattform Punkt für Punkt auf. Dabei können verschiedene Materialien über mehrere Auftragsaggregate parallel aufgebracht werden.

"Eine weitere Herausforderung besteht darin, das Verhalten der verschiedenen Suspensionen bei der anschließenden Sinterung der Bauteile so aufeinander anzupassen, dass dies defektfrei erfolgt", erklärt Moritz. "Wir modifizieren dafür die Ausgangspulver durch spezielle Mahlprozesse." Beim Sintern erhitzen sich feinkörnige keramische oder metallische Stoffe unter Druck. Die Temperaturen der Stoffe bleiben dabei so niedrig, dass sich die Gestalt des Werkstücks nicht verändert.

Für die Mikroreaktionstechnik aus keramischen Bauteilen erhofft sich Moritz viel von den neuen Möglichkeiten. Denn bisher verhinderte die Fertigungstechnik den Durchbruch der Miniatur-Chemiewerke. Ihr Einsatz war vor allem auf Forschungslabore beschränkt. Das könnte sich ändern. "Wir können keramische Bauteile jetzt anwendungsgerecht und nicht mehr fertigungsgerecht bauen", sagt der promovierte Werkstoffwissenschaftler. "Bislang wurden keramische Mikroreaktoren zumeist aus Platten gefräst. Innere und äußere Abdichtung stellten dabei immer eine technologische Herausforderung dar. Außerdem gab es das Problem passender Anschlüsse. Diese druckt man jetzt einfach zusammen mit dem keramischen Bauteil in beliebiger Form aus." Davon profitieren nicht nur Ärzte, sondern auch Pharmazeuten und Chemiker. Sie verarbeiten meist sehr teure oder gefährliche Stoffe. "Hier zunächst mit möglichst kleinen Mengen in einem Mikroreaktor zu arbeiten, ist günstiger und sicherer", sagt Moritz.

MEDICA.de; Quelle: Fraunhofer Gesellschaft

Mehr über die Fraunhofer Gesellschaft unter: www.fraunhofer.de