Proteine in der Zelle diffundieren wie „harte Kugeln“

Foto: Futuristische Abbildung von Kugeln

Forscher aus Tübingen und Grenoble
liefern neuen Erklärungsansatz für
das Gedränge in lebenden Zellen;
© panthermedia.net / krishna crea-
tions

In der wässrigen Lösung innerhalb von Zellen herrscht ein Gedränge großer Moleküle und ein fein abgestimmtes System von Reaktions- und Transportprozessen auf verschiedenen Längen- und Zeitskalen. Dieses Wechselspiel umfasst insbesondere die Diffusion – also die durch die Umgebungswärme bewirkte Zufallsbewegung – von Proteinen als sowohl begrenzenden als auch antreibenden Faktor. Das räumliche Gedränge bei hoher Proteinkonzentration bremst die Proteindiffusion schon innerhalb dieser kurzen Zeitspanne auf ein Fünftel des Wertes in einer verdünnten Lösung ab.

Die Proteinkonzentration innerhalb der Zelle wirkt somit als ein Regler, mit dem Zellprozesse wie unspezifischer Transport kontrolliert werden können.

Die Proteindiffusion auf diesen Zeitskalen in Abhängigkeit von der Proteinkonzentration ist vergleichbar mit theoretischen Vorhersagen für „harte Kugeln“. In einem solchen Hartkugelmodell aus der Kolloidphysik werden ideale, nicht verformbare Kugeln angenommen, die nur durch hydrodynamische Kopplung in ihrer flüssigen Umgebung und direkte Stöße wechselwirken.

Es zeigt sich, dass sich die Diffusion von Proteinen mit der Kolloidphysik von Kugeln im Gedränge anderer Kugeln gut beschreiben lässt: Schon nach der kurzen Zeit einiger Nanosekunden werden die Proteine durch hydrodynamische Kopplung abgebremst. Auf längeren Zeitspannen kommen weitere Wechselwirkungen wie elektrostatische Abstoßung und direkte Stöße hinzu, die die Diffusion weiter verlangsamen.

Obwohl Proteine eine weiche und unregelmäßige Struktur besitzen und eine spezifische biologische Funktion haben, lässt sich ihre Diffusion mithin erstaunlicherweise allein mit grundlegenden physikalischen Theorien beschreiben. Dieses biophysikalische Resultat könnte das Verständnis von unspezifischen, doch wichtigen Transportprozessen in der Zelle befruchten.


MEDICA.de; Quelle: Eberhard Karls Universität Tübingen