Synapsen konkurrieren um neuronales Baumaterial

17.02.2017

Gleichgewicht zwischen hemmender und erregender synaptischer Aktivität ist für strukturelle Homöostase wichtig. Während der Entwicklung neuronaler Schaltkreise müssen Nervenzellen über tausende von Synapsen korrekt miteinander verbunden werden. Synapsen verschalten zumeist auf spezialisierte Strukturen von Nervenzellen, die Dendriten. Dendriten dienen somit dem Empfang von neuronaler Information.

Bild: Ein rotes und ein blaues Geflecht, davor eine Wippe mit einer roten und einer blauen Kugel; Copyright: Abteilung Neurobiologie, JGU

Die korrekte Verteilung von Dendriten in die cholinerge (rot) und die GABAerge (blau) Eingangsdomäne hängt von ausbalancierter cholinerger und GABAerger synaptischer Aktivität während der Entwicklung ab; ©Abteilung Neurobiologie, JGU

Es ist bislang weitgehend ungeklärt, nach welchen Prinzipien und mit welchen Mechanismen während der Entwicklung von Nervensystemen die Anzahl der Synapsen und die Größe der jeweiligen Dendriten aufeinander abgestimmt werden und wie verschiedene Synapsentypen auf ihren Zieldendriten verteilt werden. Hierzu haben Wissenschaftler der Johannes Gutenberg-Universität Mainz (JGU) einen neuen Beitrag erbracht.

Demnach konkurrieren verschiedene Synapsentypen um Dendriten ihrer postsynaptischen Partnerzelle. Überwiegt während der Entwicklung die Aktivität eines Synapsentyps, so wird diesem auf Kosten eines anderen Synapsentyps mehr dendritisches Material seiner Partnerzelle zugewiesen. Es können also abhängig von der synaptischen Aktivität Dendriten innerhalb einer Nervenzelle verschoben werden. Das Übergewicht eines Konkurrenten beeinträchtigt damit die Struktur und Funktion der Nervenzelle.

"Wir konnten an Nervenzellen von Drosophila zeigen, dass die Synapsen um dendritisches Baumaterial konkurrieren", teilt Prof. Carsten Duch von der Abteilung Neurobiologie der JGU mit. Die Studie wurde in der renommierten Fachzeitschrift Neuron publiziert.

Synapsen sind eine Art Brücke von einer Nervenzelle zur anderen, über die Informationen elektrochemisch übertragen werden. Im menschlichen Gehirn sind Schätzungen zufolge ca. 100 Milliarden Nervenzellen über insgesamt etwa 100 Billionen Synapsen miteinander verschaltet. Die Wissenschaftler um Duch haben in ihrer Forschungsarbeit mit der Fruchtfliege Drosophila melanogaster die Übertragung von zwei verschiedenen Botenstoffen, Gamma-Aminobuttersäure (GABA) und Acetylcholin, die über den synaptischen Spalt wandern und an den postsynaptischen Dendriten an Rezeptoren andocken, genetisch manipuliert.

Wird die Balance der synaptischen Aktivität beider Neurotransmittersysteme manipuliert, wird das Dendritenwachstum beeinflusst und die Synapsen auf den Dendriten werden umverteilt. "Es kommt zur Konkurrenz zwischen den GABAergen und den cholinergen Synapsen, die um das Baumaterial wetteifern, auf das sie verschalten können", sagt Dr. Stefanie Ryglewski, Erstautorin der Studie.

Wenn sich die beiden Konkurrenten nicht im richtigen Gleichgewicht befinden, wird das Baumaterial falsch verteilt. Mechanistisch sind hierzu synaptisch induzierte, lokale Kalzium-Signale in den Dendriten der Nervenzelle notwendig. "Die Ausgewogenheit zwischen hemmender und erregender synaptischer Aktivität ist für die strukturelle Homöostase von Nervenzellen enorm wichtig", merkt Duch zu der neurobiologischen Forschungsarbeit an.

MEDICA.de; Quelle: Johannes Gutenberg-Universität Mainz

Mehr über die JGU Mainz unter: www.uni-mainz.de