Unbekannte Strukturen in Parasiten entdeckt

Bild: Das vordere Ende eines Malaria-Erregers

Vordere Ende eines Malaria-Erregers,
dargestellt mittels Kryo-Elektronen-
tomografie; © Uniklinik Heidelberg

Zweifache Premiere: Eine bislang unbekannte Struktur haben Forscher des Universitätsklinikums Heidelberg im Zellskelett von Malariaparasiten und Erregern der Toxoplasmose, eine auf den Menschen übertragbare Tierseuche, entdeckt. Damit haben die Parasitologen erstmals komplette einzellige Lebewesen mit Hilfe eines neuen bildgebenden Verfahrens durchleuchtet. Bei der Kryo- Elektronentomografie werden Objekte schockgefroren und dann im Nanobereich dreidimensional abgebildet.

Die Wissenschaftler vermuten, dass es sich bei der Struktur, die noch nie bei anderen Arten entdeckt wurde, um ein Eiweiß handelt, das die "Stützen" des Zellskeletts - die röhrenförmigen Mikrotubuli - verdickt und stabilisiert. Dadurch könnte das neue Protein eine entscheidende Bedeutung für die große Beweglichkeit der Krankheitserreger haben.

Die Erkenntnisse geben nicht nur Einblick in die Struktur des Zellskeletts und in die Fortbewegung der Parasiten - sie könnten auch ein neues Ziel in der Bekämpfung von Malaria und Toxoplasmose aufzeigen. "Es ist denkbar, Medikamente zu entwickeln, die direkt an der neuartigen Zellskelettstruktur angreifen und damit zielgerichtet die Parasiten zerstören, menschliche Zellen jedoch verschonen", erklärt Dr. Friedrich Frischknecht, Arbeitsgruppenleiter im Hyiene- Institut des Universitätsklinikums Heidelberg.

Die Studie wendet ein neues bildgebendes Verfahren erfolgreich an: Die Kryo-Elektronentomografie. Vorteil des Verfahrens ist, dass die Untersuchungsobjekte direkt betrachtet werden können - ohne chemische Vorbehandlung, ohne Anfärben und ohne Dünnschnitt. Durch das blitzartige Einfrieren auf minus 196 Grad Celsius bleibt die räumliche Struktur und Anordnung aller Zellbestandteile vollständig erhalten. Im Elektronenmikroskop wird das Objekt aus verschiedenen Richtungen durchstrahlt und die Bilddaten danach rechnerisch ausgewertet. Ein dreidimensionales Struktur-Modell mit einer Auflösung von bis zu vier Nanometern, also vier Millionstel Millimetern, entsteht.

MEDICA.de; Quelle: Universitätsklinikum Heidelberg