Wie kleine Magnete entspannen

Magnetische Nanopartikel sind wahre Allrounder: Man verwendet sie zum Beispiel in der Krebstherapie, in Lautsprechern oder in Stoßdämpfern.

18.03.2016

 
Foto: Nanopartikel

Die Magnetisierung von Nanopartikeln hat eine Richtung, sodass es einen Nord- und einen Südpol gibt; ©Panthermedia.net/Wolfgang Rieger

Doch so verschiedene Anwendungen erfordern möglichst genau eingestellte Materialeigenschaften. Forscher um Prof. Heiko Wende vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben nun analysiert, wie solche Partikel relaxen, und ihre Ergebnisse in der Fachzeitschrift Nano Letters veröffentlicht.

Magnetische Nanopartikel kann man sich vorstellen wie kleine Kompasse: Ihre Magnetisierung hat eine Richtung, sodass es einen Nord- und einen Südpol gibt. Legt man ein magnetisches Feld an, kann man die Partikel parallel ausrichten. Das macht man sich unter anderem in der Datenspeicherung zunutze. Wird das Feld abgeschaltet, verliert sich diese gemeinsame Ausrichtung mit der Zeit wieder. Dieser Effekt wird "Relaxation" genannt, also Entspannung.

Bei Nanopartikeln in Flüssigkeiten kann dies auf zwei Arten geschehen: Zum einen über die Brownsche Bewegung, bei der die ganzen Partikel sich im Medium bewegen. Bei sehr kleinen Teilchen von unter 30 Nanometern gibt es eine zweite Variante, die Néel-Relaxation. Hier richtet sich nur die Magnetisierung der Partikel neu aus. Ändert man nun beispielsweise die Temperatur oder das Magnetfeld, wirkt sich das auf beide Varianten unterschiedlich aus. Weiß man daher um die Art der Relaxation, so weiß man auch, wie man die Umgebungsbedingungen verändern muss, um das gewünschte Materialverhalten zu erreichen.

Bislang sind meist umständliche Vorbereitungen nötig, um die beiden Prozesse einzeln zu untersuchen. Zur Messung der Néel-Relaxation werden die Proben beispielsweise getrocknet und sind anschließend für die weitere Anwendung oft nicht mehr zu gebrauchen. Mittels Mößbauerspektroskopie, einem physikalischen Analyseverfahren, haben die beiden Physiker Joachim Landers und Soma Salamon nun beide Prozesse simultan untersuchen können - ohne die Probe auch nur vorzubehandeln oder gar zu zerstören.

MEDICA.de; Quelle: Universität Duisburg-Essen
Mehr über die Universität Duisburg-Essen unter: www.uni-due.de