Wie menschliche Immunzellen über Calciumsignale aktiviert werden

Foto: Mikroskopieaufnahme zeigt T-Zellen

T-Zellen, die sich an Tumor-
zellen anlagern. An den grün ein-
gefärbten Stellen, den immun-
ologischen Synapsen, „kommunizieren“
sie miteinander: Über Calciumsignale
werden die T-Zellen aktiviert und
die Immunabwehr wird in Gang
gesetzt;© Arbeitsgruppe Professor
Markus Hoth

Die Forscher konnten nachweisen, dass Calcium regulierend auf das Immunsystem wirkt und somit auch die Aktivierung des Immunsystems steuert. Sie machten bei ihren Untersuchungen Gebrauch von hochauflösenden Mikroskopietechniken.

Das menschliche Immunsystem muss „Freund“ von „Feind“ unterscheiden. Gegenüber dem „Freund“ soll das Immunsystem tolerant reagieren, das heißt nicht aktiviert werden, den „Feind“ soll es aber mit allen Mitteln bekämpfen. Dazu bilden bestimmte Zellen des Immunsystems, die T-Zellen, spezialisierte Kontakte mit anderen Zellen aus, die sogenannten immunologischen Synapsen.

„Ähnlich wie bei einer Synapse zwischen Nervenzellen werden an der immunologischen Synapse Informationen zwischen verschiedenen Zellen ausgetauscht – ein Schritt, der für die Aktivierung des Immunsystems von entscheidender Bedeutung ist“, erläutert Markus Hoth, Biophysik-Professor der Saar-Uni. Eine wichtige Rolle hierbei spiele die Erhöhung der Calciumkonzentration in den T-Zellen, denn Calciumsignale aktivieren die T-Zellen. „Auf diese Weise kontrollieren und regulieren sie wichtige Funktionen des Immunsystems und tragen wesentlich dazu bei, dass Gleichgewicht des Immunsystems zu erhalten“, sagt Hoth. Calciumsignale sind zum einen an der Immunreaktion gegenüber Viren beteiligt, aber auch an der Vermeidung von Immunreaktionen gegenüber harmlosen Substanzen. Entscheidend dabei ist jeweils die Konzentration der Calciumsignale.

Die wesentlichen experimentellen Arbeiten für die Publikation wurden von Ariel Quintana und Christian Junker, beide Mitarbeiter von Professor Markus Hoth, sowie Mathias Pasche im Team von Ute Becherer und Physiologie-Professor Jens Rettig durchgeführt. Sie analysierten die Wirkweise des Calciums in sehr kleinen Nanobereichen an den immunologischen Synapsen in T-Zellen. Dabei konnten sie das genau aufeinander abgestimmte Zusammenspiel von Calciumkanälen, Calciumpumpen und den Kraftwerken der Zellen, Mitochondrien, im Detail mit hochwertigen Mikroskopietechniken bestimmen.

An der Studie war auch Heiko Rieger, Professor für Theoretische Physik am Saarbrücker Campus, beteiligt. „Für uns zeigte sich auf beeindruckende Weise, wie physikalische Prinzipien dazu beitragen, fundamentale zelluläre Signalmechanismen – in diesem Fall in menschlichen T-Zellen – zu verstehen“, sagt Rieger. Sehr wichtig für das quantitative Verständnis seien darüber hinaus mathematische Modelle, wie sie von den Forschern der Theoretischen Physik an der Saar-Uni entwickelt werden. „Sie erlauben es letztendlich erst, die Aktivierung der Immunzellen in ihrer ganzen Komplexität mechanistisch zu erfassen“, ergänzt Rieger.

Die weitergehenden Arbeiten in diesem Projekt sind Teil des Sonderforschungsbereichs 894 „Calciumsignale: Molekulare Mechanismen und Integrative Funktion“, in dem Forscher der Saar-Uni nach Mechanismen der calciumabhängigen Signalübertragung in Zellen fahnden.

MEDICA.de; Quelle: Universität des Saarlandes