Solche extraartikulären Strukturen unterstützen das Kreuzband bei der Lastaufnahme, wenn das Knie beispielsweise einer Rotation des Unterschenkelknochens (Tibia) gegenüber dem Oberschenkelknochen (Femur) ausgesetzt ist. Eine besonders prominente, unterstützende Struktur ist das sogenannte anterolaterale Ligament (ALL), welches das Femur auf der Knieaußenseite mit der Tibia verbindet. Es wird sehr häufig zur zusätzlichen Stabilisation im Rahmen der VKB-Chirurgie rekonstruiert.
Die Arbeitsgruppe von Dr. Fabian Blanke der Orthopädie der Schön-Klinik München konnte in Zusammenarbeit mit der Hessing-Klinik Augsburg unter Leitung von Professor Stephan Vogt und dem Universitätsklinikum Rostock unter Leitung von Professor Thomas Tischer sowie der Arbeitsgruppe Human Body Dynamics am Fraunhofer-Institut für Kurzzeitdynamik, Ernst-Mach-Institut, EMI in Freiburg nun zeigen, dass das ALL in bestimmten Verletzungsmechanismen nicht unter vermehrte Last gesetzt wird und es das vordere Kreuzband nicht ausreichend stabilisiert beziehungsweise schützt. Nach Ansicht der Mediziner darf das ALL daher nicht als »Allzweckwaffe der VKB-Chirurgie« betrachtet werden, sondern muss differenzierter, also im Kontext der Anamnese und der Untersuchungsbefunde berücksichtigt werden.
Um zu dieser Erkenntnis zu gelangen, konnte die Arbeitsgruppe Human Body Dynamics am Fraunhofer EMI einen wichtigen Beitrag leisten, indem sie unter Leitung von Dr. Matthias Boljen mithilfe von Berechnungsmodellen zeigen konnte, wie sich die Lastverteilung in den Ligamenten des Knies bei bestimmten Belastungen entwickelt. Hierzu wurde das menschliche Knie aus dem Gesamtkörper-Menschmodell des GHBMC M50-P (englisch: 50th percentile male pedestrian) isoliert und virtuellen Belastungen ausgesetzt, die zu einer starken Rotationsbelastung des Knies führen. Bei den Untersuchungen stand die qualitative Lastverteilung im Fokus; die aufgebrachte Belastungsintensität wurde derart gewählt, dass davon ausgegangen werden kann, dass keine Beschädigungen beziehungsweise Verletzungen auftreten würden.
In der Studie wurden neben dem bereits erwähnten ALL noch drei weitere Ligamente untersucht. Es wurde herausgefunden, welche Ligamente unter welchen Bedingungen besonders starken Anteil bei der Unterstützung des VKB haben. Die vier Ligamente, die im Fokus der Untersuchung standen, mussten für die Studie zunächst in Absprache mit den Chirurgen geometrisch und konstitutiv dem Finite-Elemente (FE)-Modell hinzufügt werden, weswegen die Ergebnisse nicht einfach mit dem kommerziell erhältlichen Menschmodell nachsimuliert werden können. Die Ergebnisse der numerischen Analysen haben gezeigt, dass je nach Drehsinn der Rotation nicht nur das ALL, sondern auch noch weitere Ligamente daran beteiligt sind, das VKB durch die Aufnahme eigener Lastanteile zu stabilisieren. Das Projekt hat gezeigt, wie universell virtuelle Menschmodelle, die ihren Ursprung eigentlich in der Unfallforschung und Crashberechnung haben, in der Kurzzeitdynamik eingesetzt werden können.
MEDICA.de; Quelle: Fraunhofer-Institut für Kurzzeitdynamik, Ernst-Mach-Institut, EMI