Sie fanden dabei heraus, dass das Volumen des Zellkerns eine Schlüsselrolle spielt, das sich im Zuge der ersten Zellteilungen immer weiter verkleinert. Veröffentlicht wurden die Ergebnisse in der renommierten Fachzeitschrift Nature Communications.
Für ihre Studie haben die Ulmer Forscher in Embryonen des Zebrabärblings die Aktivität und den Bindungsstatus von Transkriptionsfaktoren untersucht. Diese besonderen Proteine binden an die DNA und lösen damit den Transkriptionsprozess aus. Dabei ist es dem Team aus Biophysikern und Entwicklungsbiologen erstmals gelungen, diese Biomoleküle während der Embryonalentwicklung "bei der Arbeit" zu beobachten. "Die Embryonalentwicklung gehört zu den faszinierendsten biologischen Prozessen überhaupt. Besonders spannend ist dabei die Frage, wann und wie im Prozess der fortlaufenden Zellteilungen das Genom aktiviert wird", so Prof. Christof Gebhardt vom Institut für Biophysik an der Universität Ulm. In der frühen Phase der Embryonalentwicklung ist es die mütterliche Eizelle, die RNA und Proteine bereitstellt. Die embryo-eigene Transkription, also die erstmalige Aktivierung des Genoms, erfolgt bei Zebrabärblingembryonen erst nach der zehnten Zellteilung – beim Menschen etwas früher. Unbekannt war bislang, wie genau die Genomaktivierung zum aller ersten Mal in Gang gebracht wird.
Die Ulmer Biophysiker haben nun gemeinsam mit Wissenschaftlern aus dem Institut für Biochemie und Molekularbiologie der Uni Ulm untersucht, wie sich die Interaktion von bestimmten Transkriptionsfaktoren mit der DNA im Zellkern im Laufe der Embryonalentwicklung verändert. Dabei haben sie herausgefunden, dass das veränderte Volumen des Zellkerns eine Schlüsselrolle bei der Genomaktivierung spielt. "In den frühen Phasen der Embryonalentwicklung teilen sich die Zellen ohne zu wachsen. Das Volumen der Zellkerne wird dadurch kleiner", erklärt Matthias Reisser. Der Doktorand am Institut für Biophysik ist Erstautor der Studie. Durch die Verkleinerung des Reaktionsvolumens verschiebt sich im Zellkern das physikalisch-chemische Gleichgewicht der Transkriptionsfaktoren hin zum DNA-gebundenen Zustand. Durch die vermehrte Bindung an die DNA bringen die Transkriptionsfaktoren schließlich den genetischen "Übersetzungsprozess" erstmals zum Laufen. "Erst wenn es richtig eng wird im Zellkern, wird das Genom aktiviert", umschreibt Entwicklungsbiologe Prof. Gilbert Weidinger vom Institut für Biochemie und Molekularbiologie den Befund.
"Um die Transkriptionsfaktoren im Zellkern genau lokalisieren zu können, arbeiten wir mit einer weiterentwickelten Form der Fluoreszenzmikroskopie, die es möglich macht, einzelne, speziell markierte Biomoleküle in lebenden Zellen sichtbar zu machen und deren Bewegung zu verfolgen: die Lichtblattmikroskopie", erläutert Biophysiker Gebhardt. Hier wird nur eine dünne Schicht der Probe beleuchtet, was zu einer höheren Sensitivität führt. Außerdem ist das Verfahren so schonend, dass die untersuchten Biomoleküle nicht unter lichtinduziertem Stress leiden und so keinen Schaden nehmen. Dadurch ist es möglich "Single Molecule Tracking"-Aufnahmen in lebenden Organismen zu machen, und damit eben auch Langzeitbeobachtungen während der Embryonalentwicklung. Am Institut für Biophysik hat Professor Gebhardt dieses Verfahren noch leistungsfähiger gemacht.
MEDICA.de; Quelle: Universität Ulm