1962 hatten der Biologe Donald Caspar und der Biophysiker Aaron Klug herausgefunden, nach welchen geometrischen Gesetzmäßigkeiten die Proteinhüllen von Viren aufgebaut sind. Ausgehend von diesen geometrischen Vorgaben entwickelten das Team um Hendrik Dietz an der TU München, unterstützt durch Seth Fraden und Michael Hagan von der Brandeis University in den USA, ein Konzept, mit dem es gelang, künstliche Hohlkörper in Virengröße zu produzieren.
Im Sommer 2019 kam im Team die Frage auf, ob solche Hohlkörper auch als eine Art "Virenfalle" verwendet werden könnten. Würde man sie innen mit Virus-bindenden Molekülen auskleiden, müssten sie Viren fest an sich binden und damit aus dem Verkehr ziehen können. Dafür müssten die Hohlkörper aber auch ausreichend große Öffnungen aufweisen, durch die Viren in die Schalen gelangen können.
"Keines der Objekte, die wir bis dato mit der Technologie des DNA-Origami gebaut hatten, wäre in der Lage gewesen, ein ganzes Virus sicher einschließen zu können – sie waren schlicht zu klein", sagt Dietz rückblickend. "Stabile Hohlkörper von dieser Größe zu bauen, war eine riesige Herausforderung."
Ausgehend von der grundlegenden geometrischen Form des Ikosaeders, einem Objekt, das sich aus 20 Dreiecksflächen aufbaut, entschied sich das Team dazu, die Hohlkörper für die Virenfalle aus dreidimensionalen, dreieckigen Platten aufzubauen.
Damit die DNA-Platten sich zu größeren geometrischen Gebilden zusammensetzen können, müssen die Kanten etwas abgeschrägt sein. Die richtige Wahl und Positionierung von Bindungsstellen auf den Kanten sorgen dann dafür, dass die Platten sich von selbst zu den gewünschten Objekten zusammensetzen.
"Auf diese Weise können wir nun Form und Größe der gewünschten Objekte durch die exakte Form der Dreiecksplatten programmieren", sagt Dietz. "Inzwischen können wir Objekte mit bis zu 180 Untereinheiten erzeugen und erreichen Ausbeuten von bis zu 95 Prozent. Der Weg dahin war allerdings recht steinig, mit vielen Iterationen."
Indem sie die Bindungsstellen an den Kanten der Dreiecke variieren, können die Wissenschaftler des Teams nicht nur geschlossene Hohlkugeln, sondern auch Kugeln mit Öffnungen oder Halbschalen erzeugen. Diese können dann als Virenfallen verwendet werden.
In Kooperation mit dem Team von Prof. Ulrike Protzer, Leiterin des Instituts für Virologie der TUM und Direktorin des Instituts für Virologie am Helmholtz-Zentrum München, testete das Team die Virusfallen an Adeno-assoziierten Viren und Hepatitis-B-Virus-Kernen.
"Schon eine einfache Halbschale passender Größe zeigt eine messbare Reduzierung der Aktivität der Viren", sagt Dietz. "Bringen wir auf der Innenseite fünf Bindungsstellen für das Virus an, beispielsweise passende Antikörper, erreichen wir bereits eine Blockierung des Virus von 80 Prozent, bauen wir mehr ein, erreichen wir eine komplette Blockade."
MEDICA.de; Quelle: Technische Universität München