Unter Koordination des Fraunhofer-Instituts für Angewandte Festkörperphysik IAF und der NVision Imaging Technologies GmbH hat ein internationales Konsortium aus sieben Forschungseinrichtungen und Industrieunternehmen im Rahmen des Projekts »MetaboliQs – Leveraging unparalleled room temperature quantum coherence to enable safe, first-of-its-kind, multimodal cardiac imaging« Durchbrüche in der Quanten-Mikroskopie für die Analyse von Stoffwechselprozessen und der Anwendung von Parawasserstoff-induzierter Polarisation ("Parahydrogen Induced Polarization", PHIP) erzielt. Die Ergebnisse bringen zwei vielversprechende Ansätze zur Verbesserung bildgebender Diagnostik und Spektroskopie in der Medizin entscheidend voran, indem sie die Nutzung der Kernspinresonanz ("Nuclear Magnetic Resonance", NMR) präziser, praktikabler und effizienter gestalten. Im Rahmen des "Future and Emerging Technologies"-(FET )Programms "The Quantum Flagship« förderte die Europäische Union (EU) "MetaboliQs" seit 2018.
Die Verbundpartner nutzten zum einen die besonderen quantensensorischen Eigenschaften von Stickstoff-Vakanz-Zentren ("nitrogen-vacancy centers", NV-Zentren) in nanostrukturiertem Diamant, um NMR-Signale im Vergleich zum derzeitigen Stand der Technik mit 1000-fach höherer räumlicher Auflösung zu detektieren und so eine mikroskopische Spektroskopie zu demonstrieren, die für Stoffwechselanalysen an einzelnen Zellen geeignet ist. Zum andern zeigten die Forschenden erstmals erfolgreich, dass ein PHIP-Quantenpolarisator für den Einsatz in hochempfindlichen präklinischen In-vivo-Studien infrage kommt, und demonstrierten so eine hyperpolarisierte Magnetresonanztomografie (MRT) unter praxisnahen Bedingungen.
Dr. Volker Cimalla, Projektverantwortlicher am Fraunhofer IAF, ordnet die Ergebnisse des Vorhabens ein: "Unser Ansatz zielte darauf ab, die einzigartigen Vorteile diamantbasierter Quantensensorik in die medizinische Anwendung zu bringen. Mit dem entwickelten Quanten-Mikroskop haben wir ein einzigartiges Forschungswerkzeug geschaffen, das die Zellanalyse entscheidend voranbringt und neue Möglichkeiten der medizinischen Forschung und der In-vitro-Diagnostik eröffnet."
Ilai Schwartz, Projektkoordinator seitens NVision, betont: "Der entwickelte Quantenpolarisator ebnet einer vielversprechenden Technologie zur Realisierung hyperpolarisierter MRT den Weg. Gegenüber aktuellen Methoden hat der PHIP-Ansatz den Vorteil, bei maximaler Präzision deutlich schneller, praktikabler und ressourcenschonender zu sein."
MEDICA.de; Quelle: Fraunhofer-Institut für Angewandte Festkörperphysik IAF