Denn Forscherteams der Fraunhofer-Institute MEVIS und FHR konnten in einem Fraunhofer-Projekt die Empfindlichkeit von MRT-Geräten unter bestimmten Umständen um ein Vielfaches nach oben schrauben. "Arbeitet das MRT mit Hochfrequenzspulen, die auf den Körper des Patienten aufgelegt werden, können wir die Dynamik je nach Fragestellung um bis zu 20 Prozent verbessern", sagt Dr. Thomas Bertuch, Teamleiter am Fraunhofer FHR. "Werden die im MRT-Gerät fest verbauten Spulen verwendet, ist sogar eine Verfünffachung des gemessenen Signals möglich." Für die Mediziner bedeutet das, dass sie Strukturen auf den MRT-Bildern deutlich detailreicher erkennen können.
Den großen Sprung in der Empfindlichkeit erreichen die Forscherteams durch spezielle Metamaterial-Platten. Diese sollen während der MRT-Untersuchung auf die zu unter-suchende Stelle des Körpers gelegt werden. "Die Metamaterialien sind keine Materialien im üblichen Sinne, sondern Leiterplatten, die mit speziellen Strukturen und Leiterbahnen bestückt sind. Auf diese Weise lassen sich Materialien mit effektiven Eigenschaften designen, wozu auch solche gehören, die in der Natur nicht vorkommen", erläutert Bertuch.
Eine Herausforderung, der sich die Forscher dabei stellen mussten: Die zurückgestrahlten Signale haben die gleiche Wellenlänge bzw. Frequenz wie die anregenden. Doch das anregende Signal ist bereits sehr stark, es ist daher nicht gewünscht, dieses noch weiter zu verstärken. Mit einem Trick konnten die Forscherinnen und Forscher dieses Hindernis umgehen: Sie integrieren nichtlineare Bauteile, etwa Dioden, in die Metamaterialien. Ist das Feld stark, verstimmen diese Bauteile die Resonanzfrequenz der Platte so, dass keine Verstärkung auftritt. Ist das Feld dagegen schwach, wird das Signal wie gewünscht verstärkt.
Wer schon einmal in einem MRT-Gerät gelegen hat, weiß: Neben der Enge ist es vor allem das laute Geräusch, das den Patienten Nerven kostet. Um bestimmen zu können, von welcher Stelle im Körper welches Signal zurückgesendet wird, braucht man üblicherweise ein räumlich unterschiedlich starkes Magnetfeld – das Gradientenfeld. Dieses wird durch schaltbare Spulen dem starken permanenten Magnetfeld dynamisch überlagert, was das laute Geräusch hervorruft. »Das lauteste Geräusch erzeugt meist der Teil der Messung, bei dem die Bilder aufgenommen werden«, erklärt Prof. Matthias Günther, stellvertretender Institutsleiter am Fraunhofer MEVIS. "Wir arbeiten daran, diese Geräuschquelle mit Metamaterialien komplett ausschalten zu können."
Im Projekt setzen die Forscher dazu auf ein Arraysystem aus Metamaterialien. Die Signale aus den verschiedenen Körperregionen treffen auf verschiedenen "Pixeln" im Arraysystem auf – die Lokalisierung der Signale ist also gleich mit inbegriffen. Im Frühjahr 2021 soll der erste Prototyp fertig sein, den die Forscher dann in weiteren Schritten noch optimieren wollen. Gänzlich still wird es bei der Untersuchung zwar nicht: Gegen das Geräusch, das beim Schalten des Magnetfelds für spezielle Bildinformationen wie den Blutfluss oder auch Diffusionseffekte entsteht, lässt sich derzeit noch nichts ausrichten. Allerdings kann dieses deutlich leiser als das durch die Bildgebung erzeugte Geräusch gemacht werden.
MEDICA.de; Quelle: Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR