Krankhafte Prozesse im Körper aufspüren, die sich den herkömmlichen bildgebenden Verfahren entziehen – dieses Potenzial verspricht die Xenon-Magnetresonanztomographie. Anders als bei der konventionellen MRT werden hierbei keine Wassermoleküle, sondern das ungiftige Edelgas Xenon detektiert, das aufgrund seiner besonderen Magnetisierung eine extrem hohe Signalstärke im MRT besitzt. Darüber hinaus besitzt die Xenon-Bildgebung auch analytisches Potenzial, da Moleküle, die mit Xenon interagieren, als Wirkstoffträger dienen können und nun mit MRT sowohl lokalisiert als auch charakterisiert werden können.
Physiker vom FMP arbeiten seit Jahren daran, die Xenon-MRT weiter zu perfektionieren, so dass sie zum Beispiel in der Diagnostik und Therapie von Krebserkrankungen eingesetzt werden kann. Nach der Entdeckung mehrerer Moleküle, die das Edelgas Xenon sehr gut binden und so hoch kontrastreiche Bilder aus dem Körperinneren liefern können, ist dem Team um Dr. Leif Schröder nun ein weiterer Erfolg gelungen.
"Wir haben einen weiteren Kontrastmechanismus zugänglich gemacht, der in kürzerer Zeit wesentlich mehr Bildinformationen generiert als die bisherige Methode", erläutert Leif Schröder. "Dabei ist die sogenannte Relaxivität viel höher, das heißt, wir brauchen wesentlich weniger Kontrastmittel als konventionelle Methoden, um Bildkontrast zu erzeugen, was ja gerade für die medizinische Anwendung von großem Vorteil ist."
Wie Leif Schröder und sein Kollege Martin Kunth zeigen konnten, kommt es allein durch den kurzen Kontakt zwischen Xenon und dem Molekül zu einer Signaländerung. Eine einzige Aufnahme (Single-Shot) mit trickreicher, fortlaufender Beobachtung des Signals genügt, um den T2-Kontrast für eine ganze Bildserie darstellen zu können.
"Das ist ein extremer Zeitvorteil im Vergleich zur alten Methode", sagt Martin Kunth. Ein weiterer Vorteil des neuen Mechanismus ist, dass keine weiteren Referenzaufnahmen oder umstrittene Metallkomplexe nötig sind, um den T2-Kontrast zu erzeugen. Zudem lassen sich nun aus einem einzigen fortlaufenden Signal über 1.000 Bilder mit fortschreitendem Kontrast rekonstruieren.
Die einfache Messung ist an eine komplexe Datenverarbeitung gekoppelt, die ebenfalls neuartig ist. Die von den FMP-Forschern programmierte Software kann mehr als nur relative Signalvergleiche – wo ist es heller, wo dunkler – sondern für bestimmte physikalische Parameter erstmals auch absolute Zahlen errechnen. Die Zahlen beschreiben die exakte Austauschrate zwischen Xenon und den Molekülen und lassen zum Beispiel Rückschlüsse auf die Stabilität eines Moleküls als Wirkstoffträger zu.
"Diese Eigenschaft können wir jetzt ebenso messen wie die Aktivierungsenergie, die für die Bindung im Wirkstoffträger benötigt wird", beschreibt Martin Kunth eine der vielen neuen Anwendungsmöglichkeiten.
"Zusammengefasst können wir mit unserem neuen Verfahren sowohl die klinische Bildgebung verbessern als auch pharmakologische oder chemisch-analytische Fragestellungen beantworten", ergänzt Leif Schröder. "Damit haben wir die Xenon-MRT einen entscheidenden Schritt vorangebracht, von dem nun alle Forscher und Kliniker, die damit arbeiten, profitieren werden."
MEDICA.de; Quelle: Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)