"Metalle spielen bei zahlreichen biologischen Prozessen eine Schlüsselrolle, vom Sauerstofftransport in unseren roten Blutkörperchen über die Mineralisierung der Knochen bis hin zur schädlichen Anreicherung von Metallen in Nervenzellen, wie sie bei Krankheiten wie Alzheimer zu beobachten ist", erklärt Stachnik, die am Center for Free-Electron Laser Science CFEL bei DESY arbeitet.
Die hochenergetische Röntgenstrahlung regt Metalle zu Fluoreszenz an, was selbst bei kleinsten Mengen noch nachweisbar ist. "Die Röntgenfluoreszenzmessungen zeigen jedoch in der Regel nicht die Ultrastruktur einer Zelle", sagt DESY-Wissenschaftler Alke Meents, der die Forschung leitete.
"Wenn man die Metalle in der Probe genau lokalisieren will, muss man die Messungen mit einem bildgebenden Verfahren kombinieren." Die Ultrastruktur der Zelle umfasst die feinen Details der Zellarchitektur, die nicht mehr mit dem Lichtmikroskop erkennbar sind.
Da biologische Proben wie Zellen sehr empfindlich auf Röntgenstrahlung reagieren, sollte ihre Struktur nach Möglichkeit gleichzeitig mit der Fluoreszenzanalyse abgebildet werden, um Strahlenschäden zu minimieren. Daher kombinierte das Team die Fluoreszenzmessungen mit einer bildgebenden Methode, der so genannten Ptychographie.
"Ein Ptychographie-Mikroskop ist der Aufnahme eines Panoramabildes ziemlich ähnlich", erklärt Stachnik. "Eine ausgedehnte Probe wie eine biologische Zelle wird mit einem kleinen Röntgenstrahl abgerastert, der viele überlappende Bilder von Teilen der Probe erzeugt. Diese überlappenden Bilder werden dann anschließend zusammengefügt."
Die Röntgenstrahlen liefern dabei jedoch nicht direkt Fotografien, sondern erzeugen ein sogenanntes Beugungsmuster, das Informationen über die räumliche Struktur des jeweiligen Teils der Probe enthält. Die Struktur lässt sich dann aus dem Muster berechnen.
"Dies führt am Ende zu einer quantitativen Abbildung der optischen Probendichte", erklärt Stachnik. "Die Ptychographie liefert mit diesem komplexen Verfahren eine räumliche Auflösung, die über die üblichen Grenzen der Röntgenoptik hinausgeht."
Die Rasteraufnahme einer Ptychographie lässt sich optimal mit gleichzeitigen Röntgenfluoreszenzmessungen kombinieren, die eine Art Karte der chemischen Elemente in der Probe liefern. Ptychographiebilder und Fluoreszenskarten lassen sich dann überlagern.
"Die Kombination dieser beiden Abbildungsmethoden ermöglicht eine weitgehend störungsfreie Korrelation von Spurenelementen mit der hochaufgelösten Struktur der Probe", sagt Meents.
Grundvoraussetzung für diese Methode ist, dass die Röntgenstrahlen nur eine "Farbe" haben, also alle dieselbe Wellenlänge besitzen (monochromatisch sind), und dass sie wie bei einem Laser alle im Gleichtakt schwingen (kohärent sind).
"Ausreichend helle, kohärente, monochromatische Röntgenstrahlung mit Energien, die hoch genug sind, um Metalle wie Eisen fluoreszieren zu lassen, sind erst mit modernen Synchrotronstrahlungsquellen wie DESYs PETRA III verfügbar geworden", sagt Meents.
Um die Methode noch weiter zu verbessern, wollen die Forscher die Analyse in Zukunft auf dreidimensionale Messungen ausweiten. "Der Versuchsaufbau wird derzeit erweitert, um die Erfassung von dreidimensionalen, tomographischen Datensätzen an der Messstation P11 zu ermöglichen", berichtet Meents.
MEDICA.de; Quelle: Deutsches Elektronen-Synchrotron DESY