Jetzt ist es einer Gruppe von Forschern des Berliner Max-Delbrück-Centrums für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC), des Berlin Institute of Health (BIH), der Charité – Universitätsmedizin Berlin und des Deutschen Konsortiums für Translationale Krebsforschung (DKTK) gelungen, in fixierten Proben von Lungenkrebsgewebe mehr als 8.000 Proteine mit Massenspektrometern im Detail zu analysieren.
"Mit den von uns entwickelten Methoden ist es möglich geworden, molekulare Prozesse in Krebszellen auf der Proteinebene tiefgreifend zu untersuchen – und zwar in bereits vorhandenen Patientenproben, die im Klinikalltag in großer Zahl anfallen und eingelagert werden", sagt Dr. Philipp Mertins, der Leiter der Technologieplattform "Proteomics" am MDC und BIH. "Selbst kleinste Gewebemengen, wie sie bei Nadelbiopsien gewonnen werden, sind für unsere Experimente ausreichend."
Die Studie gilt als ein wichtiger Erfolg für das Forschungsprojekt MSTARS (Multimodal Clinical Mass Spectrometry to Target Treatment Resistance), das seit dem Jahr 2020 vom Bundesministerium für Bildung und Forschung (BMBF) mit rund 5,7 Millionen Euro finanziert wird.
Das Team um Philipp Mertins und Prof. Frederick Klauschen vom Institut für Pathologie der Charité hat zum einen zeigen können, dass die Proteine – anders als die häufig untersuchten, aber recht empfindlichen RNA-Moleküle – in den Proben viele Jahre lang stabil bleiben und präzise quantifiziert werden können. "Zum anderen bilden die in dem Tumorgewebe vorhandenen Proteine das Krankheitsgeschehen besonders gut ab", sagt Erstautorin Corinna Friedrich, Doktorandin in den Arbeitsgruppen von Mertins und Klauschen. "Denn sie geben zum Beispiel Aufschluss darüber, welche der Gene, die das Wachstum eines Tumors fördern oder hemmen, in den Zellen besonders aktiv sind."
Das Bild, das die Forschenden mit ihrer Analyse von Adeno- und Plattenepithelkarzinomen – zwei Formen von Lungenkrebs – gewonnen haben, ist auch deshalb so detailliert geworden, weil sie nicht nur eine sehr große Zahl von den in der Zelle vorhandenen Proteinen haben aufspüren können, sondern darüber hinaus mehr als 14.000 Phosphorylierungsstellen ermittelt haben. Mithilfe der Phosphorylierung, dem reversiblem Anhängen von Phosphatgruppen an Proteine, kontrolliert die Zelle fast alle biologischen Prozesse, indem sie bestimmte Signalwege auf diese Weise ein- oder ausschaltet.
"Unsere Publikation bildet somit eine wichtige Grundlage, um zu einem besseren Verständnis des Krankheitsgeschehens bei Lungenkrebs und auch bei anderen Krebsarten zu gelangen", sagt Klauschen, der zusammen mit Mertins korrespondierender Autor der Studie ist. Inzwischen hat Klauschen die Leitung des Pathologischen Instituts an der Ludwig-Maximilians-Universität München übernommen, forscht aber auch weiterhin an der Charité. "Darüber hinaus werden wir mit den von uns entwickelten Methoden künftig besser erklären können, warum eine ganz bestimmte Therapie bei manchen Erkrankten wirkt, während sie bei anderen versagt", ergänzt der Pathologe. Somit werde man leichter für alle Patienten die jeweils beste Behandlungsoption finden.
MEDICA.de; Quelle: Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft