Ein besonderes Merkmal von Gehirnen großer Säugetiere mit höheren kognitiven Funktionen ist, dass sie eine Faltung ihrer Großhirnrinde aufweisen. Im Umkehrschluss können Faltungsanomalien in der klinischen Diagnostik von kognitiven Störungen genutzt werden. Und trotz des lange bekannten praktischen Nutzens der Morphologie des Kortex ist über die Ursachen und Folgen seiner Faltung wissenschaftlich noch wenig bekannt. Prof. Dr. Kristian Franze, dessen bisherige Forschungen zur Wechselwirkung von Mechanik und Nervensystem als bahnbrechend gelten, will gemeinsam mit einem internationalen Team aus drei weiteren Forschenden vom Institut für Neurowissenschaften (Spanien), der Universität Lüttich (Belgien) und dem Pasteur Institut (Frankreich) im ERC-geförderten Forschungsvorhaben UNFOLD diese wissenschaftliche Lücke schließen.
"Wir stellen die Hypothese auf, dass die Faltung der Hirnrinde bei Säugern – auch als Mammalia bezeichnet – aus einem dynamischen Zusammenspiel zwischen mechanischen und molekularen Prozessen hervorgeht und eine erhebliche Auswirkung auf die Architektur und Funktion des Gehirns hat.“, so Prof. Kristian Franze. Die bisherige Annahme, dass die Kortexfaltung bei Mammalia ein Epiphänomen ist, also das Resultat eines Prozesses aber ohne weitere funktionale Auswirkung, beabsichtigen Franze und sein interdisziplinäres Forschungsteam mit einem multimethodischen Ansatz zu widerlegen.
UNFOLD kombiniert eine Vielzahl experimenteller und computergestützter Ansätze, die sowohl die Genomik, also die Erfassung und Analyse von DNA-Sequenzen eines Genoms, die Zellbiologie als auch die Mechanik der Gehirnentwicklung und computergestützter Modellierung umfassen. Das Team wird In-vitro-, In-vivo- und In-silico-Ansätze auf Hirngewebe von strategisch ausgewählten Tiermodellen und Menschen anwenden. Zunächst zielen die Forscher darauf ab, die molekularen, zellulären und mechanischen Vorgänge zu kartieren, welche die Faltung des Kortex begleiten. Im weiteren Verlauf sollen diese Vorgänge verändert werden und die Folgen der Manipulationen für die Hirnfaltung und Verknüpfungen der Nervenzellen untersucht werden. Die Wissenschaftlerinnen und Wissenschaftler wollen so Schlüsselmechanismen identifizieren, die zur Kortexfaltung führen und ihre dynamischen Wechselwirkungen aufklären. Anschließend sollen die Folgen für die Funktion neuronaler Schaltkreise und das Verhalten der Tiere entschlüsselt werden. Das Projekt integriert Ansätze aus verschiedensten Bereichen der Natur- und Lebenswissenschaften, was bisher selten der Fall war. Die Entschlüsselung der dynamischen Wechselwirkungen zwischen molekularen, zellulären und mechanischen Vorgängen wird nicht nur beispiellose Einblicke in die Hirnentwicklung bieten, sondern auch zelluläre und mechanische Interaktionen aufdecken, die für viele andere Entwicklungs- und Krankheitsprozesse relevant sein könnten.
MEDICA.de; Quelle: Max-Planck-Institut für die Physik des Lichts