Bislang haben Wissenschaftlerinnen und Wissenschaftler dazu Tiermodelle, vor allem Mäuse, verwendet, doch lassen sich die Erkenntnisse nicht eins zu eins auf den Menschen übertragen. Das Mäusegehirn ist anders aufgebaut, und es fehlt ihm die für das Gehirn des Menschen typische gefurchte Oberfläche. Auch Zellkulturen waren bislang nur bedingt geeignet, breiten sich die Zellen doch meistens nur flächig auf einem Kulturmedium aus, was der natürlichen dreidimensionalen Struktur des Gehirns nicht entspricht.
Eine Gruppe von Forschenden um Barbara Treutlein, Professorin der ETH Zürich am Departement Biosysteme in Basel, hat nun einen neuen Weg beschritten, um die Entwicklung des menschlichen Gehirns zu erforschen: Sie züchtet und nutzt Organoide, millimetergrosse dreidimensionale Gewebeklümpchen, die sich aus sogenannt pluripotenten Stammzellen heranziehen lassen.
Vorausgesetzt, diese Stammzellen erhalten den richtigen Stimulus, können Forschende sie so programmieren, dass sie zu jeder beliebigen Körperzelle werden, also auch zu Nervenzellen. Werden die Stammzellen in einem kleinen Gewebeball aggregiert und dann dem entsprechenden Stimulus ausgesetzt, können sich diese sogar selbstorganisieren und ein dreidimensionales Gehirn-Organoid mit einer komplexen Gewebearchitektur formieren.
In einer neuen Studie, die soeben in der Fachzeitschrift Nature erschienen ist, haben nun Treutlein und ihre Mitarbeitenden tausende von einzelnen Zellen eines Gehirn-Organoids zu verschiedenen Zeitpunkten sehr detailliert molekulargenetisch charakterisiert, also die Gesamtheit aller Gen-Transkripte (Transkriptom) als Mass für die Genaktivität, aber auch die Zugänglichkeit des Genoms als Mass für die regulatorische Aktivität erfasst. Diese Daten konnten sie in einer Art Landkarte darstellen, auf welcher der molekulare Fingerabdruck jeder Zelle innerhalb des Organoids kartographiert ist.
Das Vorgehen erzeugt allerdings immense Datensätze: Jede Zelle des Organoids besitzt 20'000 Gene, jedes Organoid wiederum besteht aus vielen tausenden von Zellen. "Das ergibt eine gigantische Matrix, die wir nur mithilfe von geeigneten Programmen und Maschinellem Lernen lösen können", erklärt Jonas Fleck, Doktorand in der Treutlein-Gruppe und einer der Co-Erstautoren der Studie. Um die Daten zu analysieren und die Genregulationsmechanismen vorherzusagen, entwickelten die Forschenden ein eigenes Programm. "Damit können wir für jedes einzelne Gen ein ganzes Interaktionsnetzwerk erzeugen und vorhersagen, was beim Ausfall dieses Gens in den echten Zellen passiert", sagt Fleck.
Ziel dieser Studie war es, systematisch jene genetischen Schalter zu identifizieren, welche die Entwicklung der Nervenzellen in verschiedenen Regionen der Organoide massgebend beeinflussen.
Mithilfe eines Crispr/Cas-Systems schalteten die ETH-Forschenden in jeweils einer Zelle gezielt ein Gen aus, im gesamten Organoid an die zwei Dutzend Gene gleichzeitig. Damit konnten sie herausfinden, welche Rolle die jeweiligen Gene bei der Entwicklung des Gehirn-Organoids spielten.
"Mit diesem Verfahren kann man Gene, die in Krankheiten involviert sind, überprüfen. Zudem kann man schauen, welchen Effekt diese Gene auf die Entwicklung verschiedener Zellen innerhalb des Gehirn-Organoids haben", erklärt Sophie Jansen, die ebenfalls in der Gruppe von Treutlein doktoriert und zweite Co-Erstautorin der Studie ist.
MEDICA.de; Quelle: Eidgenössische Technische Hochschule Zürich (ETH Zürich)