Krebszellen sind wahre Energiefresser, denn sie wachsen und teilen sich um ein Vielfaches schneller und häufiger als gesunde Körperzellen. Den daraus folgenden stark erhöhten Energiebedarf decken sie, indem sie ihren Zuckerstoffwechsel verändern. Über die sogenannte Milchsäuregärung wandeln sie den molekularen "Brennstoff“ Glukose zum körpereigenen Stoffwechselmolekül Pyruvat und schließlich zu Milchsäure (Laktat) um. In klinischen MRT-Studien verwenden Forschende Pyruvat bereits als Biomarker – das heißt als biologischen Anhaltspunkt – für Krebserkrankungen, da Tumorzellen eine deutlich höhere Konzentration an Milchsäure aufweisen als gesunde Zellen. Diese Eigenschaft machen sich Stefan Glöggler und sein Team für ihr MRT-Verfahren zunutze.
"Wir erhöhen mit einer speziellen Form von Wasserstoff während einer Reaktion in wenigen Sekunden das Kernspinsignal des Pyruvats um viele tausendmal. Diese Signalverstärkung ist nötig, um die Umwandlung der Pyruvat-Moleküle in Laktat gezielt beobachten zu können – sie dienen uns also als Kontrastmittel“, erklärt Glöggler. Er leitet die Forschungsgruppe NMR-Signalverstärkung am Max-Planck-Institut (MPI) für Multidisziplinäre Naturwissenschaften und am Center for Biostructural Imaging der Universitätsmedizin Göttingen.
Das signalverstärkte Pyruvat verabreichte das Team um Glöggler Mäusen, die an bösartigen Tumoren litten. Anschließend verfolgten die Forschenden in Echtzeit, wie Pyruvat in Milchsäure umgewandelt wurde. "Da diese Reaktion charakteristisch für Krebszellen ist, konnten wir in den Nagern die Tumore anhand ihrer Stoffwechsel-Aktivität klar von gesundem Körpergewebe abgrenzen“, sagt der Chemiker.
Die Entwicklungen und Erkenntnisse der Forschungsgruppe sollen nun rasch in die klinische Anwendung gebracht werden, damit sie auch Patientinnen und Patienten zugutekommen. Dafür erhält Glögglers Team finanzielle Unterstützung vom ERC und von der ForTra.
Die Förderung durch die ForTra stellt Mittel über zwei Jahre bereit. Diese möchten die Göttinger Wissenschaftlerinnen und Wissenschaftler nutzen, um einen ersten klinischen Prototyp eines Gerätes zu entwickeln, das zur Signalverstärkung der verwendeten metabolischen Kontrastmittel in der Klinik zur Tumordiagnostik eingesetzt werden kann. Der Prototyp soll die speziellen Kontrastmitteldosen in ausreichenden Mengen produzieren. "Bevor wir die Technologien klinisch anwenden können, ist allerdings noch eine behördliche Zulassung nötig. Wir haben hierfür die ersten Schritte bereits eingeleitet, es wird allerdings noch etwas Zeit vergehen bis zu den ersten Humanstudien“, betont Glöggler.
MEDICA.de; Quelle: Max-Planck-Institut für Multidisziplinäre Naturwissenschaften