Micro and Nano Technologies for Smart Health and personalized Medicine

Business Unit Smart Health

October 2020

Mario Baum,
Nooshin Saeidi,
Andreas Morschhauser,
Alexander Weiss,
Christian Hedayat,
Martina Vogel,
Franziska Krause,
et.al.
General Trends in Health and Medical Technology

- **Computerization:**
 - Software and Algorithms
 - Artificial Intelligence for Data Evaluation
 - Digitization

- **Individualization:**
 - Personalized Medicine
 - Precise drugs and treatments
 - Individual implants and prosthetics (3D printing)

- **Molecularization:**
 - Point-of-Care diagnostics (Proteins, DNA, RNA analytics)
 - Organ-on-Chip
 - Imaging

- **Miniaturation:**
 - Implants
 - Wearables
 - Nano

- **Mobile Health:**
 - Remote support at home
What is MEMS?
- MEMS stands for Micro Electro Mechanical Systems
- A technique of combining Mechanical and Electrical components together on an chip to produce a system of miniature dimensions
 → dimensions less than the thickness of human hair

Why MEMS for sensors?
- Smaller in size
- Cheaper due to mass production
- More sensitive to input variations
- Have lower power consumption
- Less invasive than larger devices
Status of MEMS for medical applications

Source: Yole: „Artificial Intelligence for Medical Imaging 2020“
Example: Highly miniaturised implant with pressure, temperature, and acceleration sensor, ASIC, inductive link for wireless data and power transfer, LTCC

Example: MR-compatible micro endoscope with Ultrasonic imaging and optical imaging, CMUT on an endoscope for therapeutic treatment of tissue.

Example: FPI MOEMS chip for optical and spectral analysis and micro fluidic platform with integrated biosensors for DNA, RNA, and protein analysis
Innovation examples

Implants and medical equipment

- High precision MEMS, highly miniaturized and functionalized (incl. electronics)
- Integration technologies for MEMS and electronics at temperatures below 200°C
- Biocompatible multi layer encapsulation

2D & 2 ranges inertial sensor Si/Glass, Ca. 1 x 1 mm² active sensor area
Ultra sonic transducer Si, Ca. 6 x 6 mm²…3 x 3 mm²
Thin film encapsulation by using Parylene C, 600 nm thin
Project example: EndoStim – CMUT on Endoscope

Introduction

<table>
<thead>
<tr>
<th>Market</th>
<th>Players</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMUT market is rapidly expanding.</td>
<td>Research</td>
<td>• Medical Imaging</td>
</tr>
<tr>
<td>Medical imaging remains the main applications.</td>
<td>• Stanford University, Fraunhofer, Imec, University of Rome, ...</td>
<td>• Medical therapy</td>
</tr>
<tr>
<td></td>
<td>• Industry</td>
<td>• Photoacoustic imaging</td>
</tr>
<tr>
<td></td>
<td>• Hitachi, Butterfly Network, Philips, Kolo, Vermon</td>
<td>• Gas flow sensors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Acoustic actuator / manipulator</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Non destructive testing</td>
</tr>
</tbody>
</table>
CMUT - State of the Art in Medical Applications

Dominated by medical imaging
- Endoscopy, Probe or Catheter based

Butterfly Network
- First handheld CMUT probe
- Battery operated
- Connected to smartphone

Multi-tasking 4G CMUT linear matrix probe by Hitachi

High frequency probes by Kolo
CMUT - Development Flow @ ENAS

1. Material selection
2. Simulation
3. Extract device geometry
4. Fabrication
5. Layout & Mask design
6. Assembly, packaging and characterization
Research and Development on CMUT - Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabrication Technology</td>
<td>Wafer Bonding</td>
</tr>
<tr>
<td>Wafer size</td>
<td>6” (also possible in 8”)</td>
</tr>
<tr>
<td>Number of die per wafer</td>
<td>Layout and wafer size dependent (e.g. 1000)</td>
</tr>
<tr>
<td>Number of elements per die, and CMUT cell in each die</td>
<td>Application dependent</td>
</tr>
<tr>
<td>CMUT cell diameter</td>
<td>10-500µm</td>
</tr>
<tr>
<td>Membrane thickness</td>
<td>Up to 10µm</td>
</tr>
<tr>
<td>Cavity depth</td>
<td>Design dependent e.g. from below 1µm to 3µm</td>
</tr>
<tr>
<td>DC bias voltage</td>
<td>Up to 150V</td>
</tr>
<tr>
<td>AC excitation voltage</td>
<td>Up to 150V</td>
</tr>
<tr>
<td>Frequency range</td>
<td>Design dependent e.g. from below 1 MHz up to 15 MHz</td>
</tr>
<tr>
<td>Acoustic power</td>
<td>Design dependent Starting in kPa ranges</td>
</tr>
</tbody>
</table>
Conclusion

- High performance MEMS will generate a high potential for medical applications, especially as a „system“

- Patient specific or application specific MEMS have to fulfill cost expectations and medical reimbursement needs! Even as a niche…

- Stretchable and flexible substrates/systems will get more and more important for wearables even direct on skin.

- Flexible electronics and sensors need smart power sources and energy storage as well as management concepts

- Encapsulation and packaging technologies will need further optimization regarding biocompatible integration!

- Research for medical products need strategic initial and preparatory activities in close cooperation with manufacturers.
Thank you!

Dr.-Ing. Mario Baum
0371 / 45 001 261
mario.baum@enas.fraunhofer.de

Fraunhofer ENAS
Abteilung System Packaging
Technologie Campus 3
D-09126 Chemnitz
http://www.enas.fraunhofer.de